Step of Proof: do-apply-p-co-restrict 11,40

Inference at * 
Iof proof for Lemma do-apply-p-co-restrict:


  AB:Type, f:(A(B + Top)), P:(A), p:(x:A. Dec(P(x))), x:A.
  (can-apply(p-co-restrict(f;p);x))  (do-apply(p-co-restrict(f;p);x) = do-apply(f;x)) 
latex

 by ((((Unfold `p-co-restrict` 0) 
CollapseTHEN (((Auto
CollapseTHEN (((((
CoRWO "do-apply-compose" 0) 
THEN (Auto))
CollapseTHEN (((((RWO "can-apply-compose-iff" (-1)) 

CoTHEN (Auto))
CollapseTHEN (((RWO "do-apply-p-co-filter" 0) 
THEN (Auto))))))))))

THCollapseTHEN (((All (RWO "do-apply-p-co-filter")) 
CollapseTHEN (Auto)))) 
latex


Co.


Definitionsp-co-restrict(f;p), f o g  , x.A(x), Dec(P), s = t, P  Q, P & Q, x:A  B(x), P  Q, b, , can-apply(f;x), do-apply(f;x), p-co-filter(f), T, x(s), f(a), xt(x), P  Q, suptype(ST), left + right, S  T, x:AB(x), Top, x:A.B(x), Void, True, t  T, x:AB(x), , Type
Lemmasp-compose wf, p-co-filter wf, decidable wf, do-apply-compose, can-apply-compose-iff, do-apply wf, assert wf, bool wf, can-apply wf, squash wf, true wf, top wf, do-apply-p-co-filter

origin